Friable Asbestos Materials Re-Inspection Survey

Knight Frank Pty Ltd

400 Kent Street, Sydney NSW

August 2012

Our Ref: C107665 : J113437

Noel Arnold & Associates Pty Ltd
Level 2, 11 Khartoum Road
North Ryde NSW 2113
Ph: (02) 9889 1800 Fax: (02) 9889 1811
www.noel-arnold.com.au

C107665: AGH
J113437 400 Kent Street, Sydney NSW Aug 2012
Friable Asbestos Materials Re-Inspection Survey

Knight Frank Pty Ltd

400 Kent Street, Sydney NSW

Executive Summary

Purpose

This report presents the findings of a Friable Asbestos Materials Re-Inspection Survey conducted of the premises located at 400 Kent Street, Sydney NSW. Noel Arnold & Associates Pty Ltd (NAA) carried out the reinspection survey in August 2012.

Scope

The survey involved a visual inspection and reassessment of friable asbestos-containing materials previously identified or suspected, and the collection and analysis of any newly suspected asbestos-containing materials (ACMs), if necessary. The bonded asbestos-containing materials previously identified in the building were not reinspected as they were outside of the scope for this phase of works. They have, however, been included in the Asbestos Register of this report so that all ACMs in the building are captured in one document.

Findings

Friable asbestos-containing materials were suspected during the 2012 re-inspection survey in the following locations:

No friable asbestos-containing materials were positively identified or suspected during the previous survey.

Management Recommendations

- Consider labelling all asbestos-containing materials not already labelled, that are to remain in-situ to warn of the dangers of disturbing these materials, as per the recommendations of Code of Practice: How to Manage and Control Asbestos in the Workplace (WorkCover 2011). This is particularly relevant for external maintenance contractors and future staff to prevent inadvertent damage to unfamiliar asbestos materials.

- Schedule regular reassessment of the asbestos-containing materials remaining in-situ to monitor their aging/deterioration - as per the Code of Practice: How to Manage and Control Asbestos in the Workplace (WorkCover 2011).

- Prior to demolition works, undertake a Destructive Hazardous Material Survey as per AS 2601:2001 The Demolition of Structures.
Friable Asbestos Materials Re-Inspection Survey

Knight Frank Pty Ltd

400 Kent Street, Sydney NSW

Table of Contents

1. Introduction .. 1
2. Scope of Work ... 1
3. Background Information ... 1
4. Methodology ... 1
5. Survey Findings .. 2
6. Recommendations .. 2

Appendix A: Hazardous Materials Register ... 3
Appendix B: Previous Asbestos Sample Analysis Reports 10
Appendix C: Risk Assessment Factors ... 11
Appendix D: Photographs ... 14
Appendix E: General Hazardous Materials Information 16
Statement of Limitations

This report has been prepared in accordance with the agreement between Knight Frank Pty Ltd and Noel Arnold & Associates Pty Ltd.

Within the limitations of the agreed upon scope of services, this assessment has been undertaken and performed in a professional manner, in accordance with generally accepted practices, using a degree of skill and care ordinarily exercised by members of its profession and consulting practice. No other warranty, expressed or implied, is made.

This report is solely for the use of Knight Frank Pty Ltd and any reliance of this report by third parties shall be at such party's sole risk and may not contain sufficient information for purposes of other parties or for other uses. This report shall only be presented in full and may not be used to support any other objective than those set out in the report, except where written approval with comments are provided by Noel Arnold & Associates Pty Ltd.

This report was prepared for Knight Frank Pty Ltd for the purpose set out herein and it is not intended that any other person use or rely on it. Whilst this report is accurate to the best of our knowledge and belief Noel Arnold & Associates Pty Ltd cannot guarantee completeness or accuracy of any descriptions or conclusions based on information supplied to it during site surveys, visits and interviews. Responsibility is disclaimed for any loss or damage, including but not limited to, any loss or damage suffered by Knight Frank Pty Ltd arising from the use of this report or suffered by any other person for any reason whatsoever.

This report relates only to the identification of asbestos containing materials used in the construction of the building and does not include the identification of dangerous goods or hazardous substances in the form of chemicals used, stored or manufactured with the building or plant.

The following should also be noted:

While the survey has attempted to locate the asbestos containing materials within the site it should be noted that the review was a visual inspection and a limited sampling program was conducted and/or the analysis results of the previous report were used. Representative samples of suspect asbestos materials for collected for analysis. Other asbestos materials of similar appearance are assumed to have a similar content.

Not all suspected asbestos materials were sampled. Only those asbestos materials that were physically accessible could be located and identified. Therefore it is possible that asbestos materials, which may be concealed within inaccessible areas/voids, may not have been located during the audit. Such inaccessible areas fall into a number of categories, including but not restricted to:

(a) Ground Level, G/F Switch Room (keys not provided).
(b) In set ceilings or wall cavities.
(c) Those areas accessible only by dismantling equipment or performing minor localised demolition works.
(d) Service shafts, ducts etc., concealed within the building structure.
(e) Energised services, gas, electrical, pressurised vessel and chemical lines.
(f) Voids or internal areas of machinery, plant, equipment, air-conditioning ducts etc.
(g) Totally inaccessible areas such as voids and cavities created and intimately concealed within the building structure. These voids are only accessible during major demolition works.
(h) Height restricted areas.
(i) Areas deemed unsafe or hazardous at time of audit.

In addition to areas that were not accessible, the possible presence of hazardous building materials may not have been assessed because it was not considered practicable as:

1. It would require unnecessary dismantling of equipment; and/or
2. It was considered disruptive to the normal operations of the building; and/or
3. It may have caused unnecessary damage to equipment, furnishings or surfaces; and/or
4. The hazardous material was not considered to represent a significant exposure risk
5. The time taken to determine the presence of the hazardous building material was considered prohibitive.

Only minor destructive auditing and sampling techniques were employed to gain access to those areas documented in Appendix A. Consequently, without substantial demolition of the building, it is not possible to guarantee that every source of hazardous material has been detected.

During the course of normal site works care should be exercised when entering any previously inaccessible areas or areas mentioned above and it is imperative that work cease pending further sampling if materials suspected of containing asbestos or unknown materials are encountered. Therefore during any refurbishment or demolition works, further investigations and assessment may be required should any suspect material be observed in previously inaccessible or areas not fully inspected previously i.e. carpeted floors.

This report is not intended to be used for the purposes of tendering, programming of works, refurbishment works or demolition works unless used in conjunction with a specification detailing the extent of the works. To ensure its contextual integrity, the report must be read in its entirety and should not be copied, distributed or referred to in part only.

August 2012

J 113437 400 Kent Street, Sydney NSW Aug 2012 C 107665:AGH Page: iii
1. Introduction
This report presents the findings of a Friable Asbestos Materials Re-Inspection Survey conducted of the premises located at 400 Kent Street, Sydney NSW. The survey was undertaken to update the existing asbestos register for the site. Aaron Holmes of Noel Arnold & Associates Pty Ltd (NAA) carried out the survey on the 16th August 2012 at the request of Jon Jessop of Knight Frank.

2. Scope of Work
The scope of the Friable Asbestos Materials Re-Inspection was to:

- Re-Inspect and reassess previously identified friable asbestos materials;
- Update the Asbestos Materials Register for the site; &
- Make recommendations for the ongoing management of the remaining bonded asbestos materials.

The Friable Asbestos Materials Re-Inspection Survey included the whole premises including the interior & exterior of the building.

The survey was conducted during normal business hours and the areas surveyed were occupied during the assessment.

3. Background Information

3.1 Site Information
The building consists of a multi storey office building and is of concrete construction with the roof being clad with metal sheeting. Internally, the walls are a combination of concrete and plasterboard and the ceilings a combination of plasterboard and compressed SMF ceiling tiles. The floors are typically concrete overlain by carpet and ceramic tile floor coverings throughout.

3.2 Previous Survey Information

The purpose of the 2012 re-inspection was to assess the friable asbestos-containing materials only within the building and to ensure that they were being managed in accordance with the Code of Practice: How to Manage and Control Asbestos in the Workplace (WorkCover 2011).

4. Methodology
The re-inspection was carried out in accordance with the guidelines documented in the Code of Practice: How to Manage and Control Asbestos in the Workplace (WorkCover 2011).

The survey involved a visual inspection of previously identified and suspected friable asbestos-containing materials and the collection and analysis of any friable materials previously unidentified if necessary. No additional samples of suspected asbestos-containing friable materials were collected during the current survey. Refer to Appendix B for previous analytical results.

4.1 Areas Not Accessible/Not Inspected
It is noted that given the constraints of practicable access encountered during the risk assessment survey, the following areas were not accessed or inspected:

- Within wall cavities;
- Within those areas accessible only by dismantling equipment;
- Within service shafts, ducts etc., concealed within the building structure;
- Within voids or internal areas of plant, equipment, air-conditioning ducts etc;
5. Survey Findings
Friable asbestos-containing materials were suspected during the 2012 re-inspection survey in the following locations:
No friable asbestos-containing materials were positively identified or suspected during the previous survey.

6. Recommendations
Management Recommendations
- Consider labelling all asbestos-containing materials not already labelled, that are to remain in-situ to warn of the dangers of disturbing these materials, as per the recommendations of Code of Practice: How to Manage and Control Asbestos in the Workplace (WorkCover 2011). This is particularly relevant for external maintenance contractors and future staff to prevent inadvertent damage to unfamiliar asbestos materials.
- Schedule regular reassessment of the asbestos-containing materials remaining in-situ to monitor their aging/deterioration - as per the Code of Practice: How to Manage and Control Asbestos in the Workplace (WorkCover 2011).
- Prior to demolition works, undertake a Destructive Hazardous Material Survey as per AS 2601:2001 The Demolition of Structures.
Friable Asbestos Materials Re-Inspection Survey

Knight Frank Pty Ltd

400 Kent Street, Sydney NSW

Appendix A: Hazardous Materials Register
How to use this Report

- The findings of the report are contained in this appendix: Asbestos Materials Register.
- A summary of the significant findings is contained in Section 5.
- The table below outlines the layout of the tabulated Asbestos Register and the information presented.

<table>
<thead>
<tr>
<th>Location</th>
<th>Item Description Comments</th>
<th>Sample No.</th>
<th>Sample Status</th>
<th>Photo No.</th>
<th>Extent</th>
<th>Condition</th>
<th>Friability</th>
<th>Disturb. Potential</th>
<th>Risk Status</th>
<th>Re-inspect Date</th>
<th>Control Priority</th>
<th>Control Recommendation</th>
</tr>
</thead>
</table>

These rows detail the location of the Asbestos Materials.

Descriptive information about each item is contained in the first three columns.

An estimated amount of the asbestos materials present is included in this column.

These four columns identify the risk factors and risk rating associated with the asbestos material. Further information on these risk factors & risk status is contained in Appendix C.

These two columns identify the specific control recommendations and their priority. The last column is coloured red to indicate high risk asbestos materials and yellow for low risk materials. Further information on the priority ranking system is found in Appendix C. Information on recommendations for abatement of hazards is contained in Section 6.

This column identifies if the material contains asbestos.

Positive indicates that the sample contains asbestos.

Negative indicates that the sample does not contain asbestos.

Where the material was not sampled, but is similar to another sample, this column will indicate that the sample is Assumed Negative or Assumed Positive.

Suspected Positive indicates that the material was inaccessible at the time of inspection, however is likely that it contains asbestos.

Red indicates **HIGH** priority.

Orange indicates **MEDIUM** priority.

Yellow indicates **LOW** priority.

The photo number refers to the photograph of the asbestos material included in Appendix D.

Where asbestos materials are identified and are to remain in-situ a date is given for re-inspection. This date is based on the risk rating of the material.

The sample number refers to the Asbestos Sample Analysis Report in Appendix B.
Asbestos Materials Register

400 Kent Street, Sydney NSW

Asbestos Materials

<table>
<thead>
<tr>
<th>Location</th>
<th>Item Description</th>
<th>Sample No.</th>
<th>Sample Status</th>
<th>Photo No.</th>
<th>Extent</th>
<th>Condition</th>
<th>Friability</th>
<th>Disturb. Potential</th>
<th>Risk Status</th>
<th>Re-inspect Date</th>
<th>Control Priority</th>
<th>Control Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 13 (Lift Motor Room)</td>
<td></td>
</tr>
<tr>
<td>Lift Motors Internal Brake pads*</td>
<td>Not sampled due to operational equipment</td>
<td>-</td>
<td>Suspected Positive</td>
<td>-</td>
<td>4 Units</td>
<td>Good</td>
<td>Non-Friable</td>
<td>Low</td>
<td>Low</td>
<td>Nov 2011</td>
<td>4</td>
<td>Confirm status and label. Leave and maintain in good condition. Remove prior to refurbishment/demolition by an appropriately licenced asbestos removal contractor</td>
</tr>
<tr>
<td>Switchboard Electrical backing boards*</td>
<td>Not sampled due to live electricity</td>
<td>-</td>
<td>Suspected Positive</td>
<td>-</td>
<td>2 Units</td>
<td>Good</td>
<td>Non-Friable</td>
<td>Low</td>
<td>Low</td>
<td>Nov 2011</td>
<td>4</td>
<td>Confirm status and label. Leave and maintain in good condition. Remove prior to refurbishment/demolition by an appropriately licenced asbestos removal contractor</td>
</tr>
<tr>
<td>Switchboard Fuses*</td>
<td>Not sampled due to live electricity</td>
<td>-</td>
<td>Suspected Positive</td>
<td>-</td>
<td>~20 Units</td>
<td>Good</td>
<td>Friable</td>
<td>Low</td>
<td>Low</td>
<td>Aug 2013</td>
<td>3</td>
<td>Confirm status and label. Leave and maintain in good condition. Remove prior to refurbishment/demolition by a Class A (Friable) licensed asbestos removal contractor</td>
</tr>
<tr>
<td>Level 12 (Plant Room)</td>
<td></td>
</tr>
<tr>
<td>Plant Room, Throughout Fire Doors Core insulation material</td>
<td></td>
<td>-</td>
<td>Suspected Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Plant Room Steel Columns & Beams Vermiculite spray</td>
<td>Previously sampled NAA Ref: 86551-04-01</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Item Description</td>
<td>Sample No.</td>
<td>Sample Status</td>
<td>Photo No.</td>
<td>Extent</td>
<td>Condition</td>
<td>Friability</td>
<td>Disturb. Potential</td>
<td>Risk Status</td>
<td>Re-inspect Date</td>
<td>Control Priority</td>
<td>Control Recommendation</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Plant Room</td>
<td>Hydrant Diesel Pump Room</td>
<td>Previously sampled NAA Ref: 86551-04-03</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Confirm status and label. Leave and maintain in good condition. Remove prior to refurbishment/demolition by an appropriately licenced asbestos removal contractor</td>
</tr>
<tr>
<td></td>
<td>Throughout Switchboards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric backing boards</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Not sampled due to live electricity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant Room</td>
<td>Previously sampled NAA Ref: 86551-04-02</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exterior walls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibre cement sheeting</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Services Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Essential Switchboards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical backing boards</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Not sampled due to live electricity; Newer style switchboard</td>
<td></td>
</tr>
<tr>
<td>Level 11</td>
<td>Northern Fire Stairwell</td>
<td>Previously sampled NAA Ref: 86551-04-07</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northern Wall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibre cement sheeting</td>
<td></td>
</tr>
<tr>
<td>Southern Fire</td>
<td>Stairwell</td>
<td>Previously sampled NAA Ref: Same as 86551-04-07</td>
<td>Assumed Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southern Wall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibre cement sheeting</td>
<td></td>
</tr>
<tr>
<td>Location Item Description Comments</td>
<td>Sample No.</td>
<td>Sample Status</td>
<td>Photo No.</td>
<td>Extent</td>
<td>Condition</td>
<td>Friability</td>
<td>Disturb. Potential</td>
<td>Risk Status</td>
<td>Re-inspect Date</td>
<td>Control Priority</td>
<td>Control Recommendation</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Throughout Fire Doors Core insulation material</td>
<td>-</td>
<td>Suspected Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>* Not sampled due to encased material; labelled “2004”</td>
<td></td>
</tr>
</tbody>
</table>

Level 10

<table>
<thead>
<tr>
<th>Location Item Description Comments</th>
<th>Sample No.</th>
<th>Sample Status</th>
<th>Photo No.</th>
<th>Extent</th>
<th>Condition</th>
<th>Friability</th>
<th>Disturb. Potential</th>
<th>Risk Status</th>
<th>Re-inspect Date</th>
<th>Control Priority</th>
<th>Control Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Fire Stairwell Northern Wall Fibre cement sheeting</td>
<td>Previously sampled NAA Ref: Same as 86551-04-07</td>
<td>Assumed Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Southern Fire Stairwell Southern Wall Fibre cement sheeting</td>
<td>Previously sampled NAA Ref: Same as 86551-04-07</td>
<td>Assumed Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

| Throughout Fire Doors Core insulation material | - | Suspected Negative| - | - | - | - | - | - | - | - | - |
| * Not sampled due to encased material; labelled “2004” | | | | | | | | | | | |

<p>| Plant Room Switchboard Electrical backing board | - | Suspected Negative| - | - | - | - | - | - | - | - | - |
| * Not sampled due to live electricity; Newer style switchboard | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>Location</th>
<th>Item Description</th>
<th>Comments</th>
<th>Sample No.</th>
<th>Sample Status</th>
<th>Extent</th>
<th>Condition</th>
<th>Friability</th>
<th>Disturb. Potential</th>
<th>Risk Status</th>
<th>Re-inspect Date</th>
<th>Control Priority</th>
<th>Control Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels 1-9</td>
<td></td>
</tr>
<tr>
<td>Northern Fire Stairwell</td>
<td>Northern Wall</td>
<td>Fibre cement sheeting</td>
<td>Previously sampled</td>
<td>Assumed Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Southern Fire Stairwell</td>
<td>Southern Wall</td>
<td>Fibre cement sheeting</td>
<td>Previously sampled</td>
<td>Assumed Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Throughout</td>
<td>Fire Doors</td>
<td>Core insulation material</td>
<td></td>
<td>-</td>
<td>Suspected Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ground Level</td>
<td></td>
</tr>
<tr>
<td>Throughout</td>
<td>Fire Doors</td>
<td>Core insulation material</td>
<td></td>
<td>-</td>
<td>Suspected Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Main Switch Room, Throughout</td>
<td>Switchboards</td>
<td>Electrical backing boards</td>
<td></td>
<td>-</td>
<td>Suspected Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Location Item Description Comments</td>
<td>Sample No.</td>
<td>Sample Status</td>
<td>Photo No.</td>
<td>Extent</td>
<td>Condition</td>
<td>Friability</td>
<td>Disturb. Potential</td>
<td>Risk Status</td>
<td>Re-inspect Date</td>
<td>Control Priority</td>
<td>Control Recommendation</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Lower Ground Level</td>
<td></td>
</tr>
<tr>
<td>Grease Arrestor Sewer Ejector Room Ductwork</td>
<td>Previously sampled NAA Ref: 86551-04-08</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprayed vermiculite insulation</td>
<td></td>
</tr>
<tr>
<td>SC.C High Voltage Cable Pit Switchboards Electrical backing boards</td>
<td>Suspected Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Not sampled due to live electricity; Newer style switchboards</td>
<td></td>
</tr>
<tr>
<td>Exterior</td>
<td></td>
</tr>
<tr>
<td>Front (Western) Façade Levels 1-11 Mastic between concrete and brickwork</td>
<td>Suspected Positive</td>
<td>-</td>
<td>Throughout</td>
<td>Good</td>
<td>Non-Friable</td>
<td>Low</td>
<td>Low</td>
<td>Nov 2011</td>
<td>3</td>
<td>Confirm status and label. Leave and maintain in good condition. Remove prior to refurbishment/demolition by an appropriately licenced asbestos removal contractor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Not sampled due to inaccessible, sealed windows</td>
<td></td>
</tr>
<tr>
<td>Exterior, Adjacent North Exit Air-conditioning Ductwork Internal vermiculite lining</td>
<td>Previously sampled NAA Ref: 86551-04-04</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior, Adjacent North Exit Air-conditioning Ductwork External fibrous panel</td>
<td>Previously sampled NAA Ref: 86551-04-05</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior, Adjacent North Exit Air-conditioning Ductwork, Fan Vent Base Bituminous membrane</td>
<td>Previously sampled NAA Ref: 86551-04-06</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Friable Asbestos Materials Re-Inspection Survey

Knight Frank Pty Ltd

400 Kent Street, Sydney NSW

Appendix B: Previous Asbestos Sample Analysis Reports
Wednesday 24/11/2010

Dear Brett,

Re: Asbestos Identification Analysis - 400 Kent Street, Sydney NSW

This letter presents the results of asbestos fibre identification analysis performed on 8 samples collected by Stuart Carroll of Noel Arnold & Associates Pty Ltd on Wednesday 17th November, 2010. The samples were collected from 400 Kent Street, Sydney NSW.

All sample analysis was performed using polarised light microscopy, including dispersion staining in our Sydney Laboratory in accordance with Noel Arnold and Associates Pty Ltd Test Method NALAB 302 “Asbestos Identification Analysis” and following the guidelines of Australian Standard AS4964-2004.

The samples will be kept for six months and then disposed of, unless otherwise directed.

The results of the asbestos identification analysis are presented in the appended table.

Should you require further information please contact Stuart Carroll.

Yours sincerely

NOEL ARNOLD & ASSOCIATES PTY LTD

Simon Day: Approved Identifier

Simon Day: Approved Signatory

This document is issued in accordance with NATA’s accreditation requirements. Accredited for compliance with ISO/IEC 17025. Corporate Site No. 5450, Site No. 3402 Sydney Laboratory. This document shall not be reproduced except in full. Sampling is not covered by the scope of the NATA accreditation.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Location/Description/Weight or Size</th>
<th>Analysis Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>86551-04</td>
<td>Level 12, Plant Room, Steel Column - Sprayed insulation Gold-grey loosely-formed powder, mica, organic fibre vermiculite-type material ~47 x 37 x 8 mm</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>01</td>
<td>Level 12, Plant Room, Exterior Walls - Fibre cement sheeting Unpainted brown-grey compressed fibre-cement sheet material ~30 x 21 x 5 mm</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>02</td>
<td>Level 12, Plant Room, Hydrant Diesel Pump Room, Floor - Dust/Debris Gold-grey compressed/formed powder, mica vermiculite-type material ~30 x 24 x 6 mm</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>03</td>
<td>Level 12, Exterior, Air-Conditioning Ducting - Internal insulation Grey compressed/formed powder, mica, organic fibre vermiculite-type material ~30 x 25 x 4 mm</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>04</td>
<td>Level 12, Exterior, Air-Conditioning Ducting - Fibrous panel White, gold compressed/formed powder, mica, organic fibre sheet material ~20 x 12 x 10 mm</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>05</td>
<td>Level 12, Exterior, Air-Conditioning Ducting, Fan Vent Base - Bituminous membrane Silver-painted yellow quartz pebble-coated black-brown bituminous, vitreous fibrous sheet material ~31 x 27 x 8 mm</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>06</td>
<td>Level 11/12, South Fire Stairs, South Wall - Fibre cement sheeting Cream-painted gold-grey fibre-cement sheet material ~13 x 7 x 2 mm</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>07</td>
<td>Lower Ground Level, Grease Arrestor Sewer Ejector Room, Duct-work - Sprayed insulation Gold-grey compressed/formed powder, mica vermiculite-type material ~13 x 12 x 5 mm</td>
<td>No Asbestos Detected</td>
</tr>
</tbody>
</table>
Friable Asbestos Materials Re-Inspection Survey

Knight Frank Pty Ltd

400 Kent Street, Sydney NSW

Appendix C: Risk Assessment Factors
Risk Assessment Factors - Asbestos

The static presence of asbestos-containing materials does not necessarily constitute an exposure risk. However, if the asbestos-containing material is sufficiently disturbed to cause the release of airborne respirable fibres, then an exposure risk may be posed to individuals. The assessment of the exposure risk posed by asbestos-containing materials assesses a) the material condition and friability, and b) the disturbance potential.

Material Condition

The assessment factors for material condition include:

- Evidence of physical deterioration and/or water damage;
- Degree of friability of asbestos-containing material;
- Surface treatment, unlined or uncoated; and
- Likelihood to sustain damage or deterioration in its current location and state.

Physical Condition and Damage:

The condition of the asbestos is rated as either being good, fair or poor.

- **Good** refers to asbestos that has not been damaged or has not deteriorated;
- **Fair** refers to asbestos material having suffered minor cracking or de-surfacing; and
- **Poor** describes asbestos which has been damaged or its condition deteriorated over time.

Friability and Surface Treatment:

The degree of friability of asbestos materials describes the ease of which the material can be crumbled, and hence to release fibres, and takes into account surface treatment.

- **Friable** asbestos (e.g., sprayed asbestos beam insulation (limpet), pipe lagging) can be easily crumbled and is more hazardous than non-friable asbestos products.
- **Non-friable** asbestos also referred to as bonded asbestos, is typically comprises asbestos fibres tightly bound in a stable non-asbestos matrix or impregnated with a coating. Examples of non-friable asbestos products include asbestos cement materials (sheeting, pipes etc), asbestos containing vinyl floor tiles, compressed gaskets and electrical backing boards.

Disturbance Potential

In order to assess the potential for disturbance potential the following factors are considered:

- Requirement for access for either building work and type of maintenance operations;
- Likelihood and frequency of disturbance of the asbestos material;
- Accessibility of asbestos materials;
- Proximity of air plenums and direct air stream;
- Quantity and exposed surface areas of asbestos; and
- Normal use and activity in area, and numbers of persons in vicinity of asbestos materials.

These factors are used to determine (i) the potential for fibre generation, and, (ii) the potential for exposure to person(s), as a rating of low, medium or high disturbance potential:

- **Low** describes asbestos materials that cannot be easily disturbed, as they are not readily accessible, with low activity and likelihood of disturbance from maintenance.
- **Medium** describes asbestos materials that are accessible, but normal activity of occupancy poses low risk of disturbance, but maintenance work may occasionally cause exposure.
- **High** describes asbestos materials that are readily disturbed by maintenance or planned building works, or their accessibility poses a risk to occupants given the activity in the area. Where these factors have indicated that there is a possibility of exposure to airborne fibres, appropriate risk control measures are recommended.
Risk Status and Priority Assessment for Control of Asbestos Exposure Risks

Risk Status

The risk factors described above are used to rank the asbestos exposure risk posed by the presence of asbestos-containing materials.

- **A low risk ranking** described asbestos-containing materials that pose a low exposure risk to personnel, employees and general public providing they remain in a stable condition, e.g. materials that are in good condition and have low accessibility.

- **A medium risk ranking** applies to materials that pose an increased exposure risk to people in an area.

- **A high risk ranking** pose a high exposure risk to personnel or the public in the area of the material. Materials with a high-risk ranking will also possess a Priority 1 recommendation to manage the asbestos and reduce the risk.

The control measures require elimination of asbestos exposure risk by removal, or if not practicable, abatement of exposure risk through enclosure and encapsulation.

Priority Assessment

The following schedule of priority assessment system is adopted to assist in the programming and budgeting of the control of asbestos risk identified in the assessment.

Priority 1 (P1) Organise Abatement Works Immediately

An area has asbestos-containing materials, which are either damaged or are being exposed to continual disturbance. Due to these conditions, there is an increased potential for exposure and/or transfer of the material to other parts with continued unrestricted use of the area. Representative asbestos fibre monitoring should be conducted in the building area during normal building operation where recommended. Prompt abatement of the asbestos hazard is recommended. As an interim, restrict access.

Priority 2 (P2) Organise Remedial Works Within 3 to 6 Months

Area has asbestos containing materials with a potential for disturbance due to the following conditions:

1. Material has been disturbed/damaged and its current condition, while not posing an immediate hazard, is unstable.
2. The material is accessible and can when disturbed, present a short-term exposure risk.
3. Demolition, renovation, refurbishment, maintenance, modification or new installations involving air-handling systems, ceilings, lighting, fire safety systems or floor layout.

Appropriate abatement measures should be taken as soon as practicable. A negligible exposure risk exists if materials remain under the control of an asbestos management plan.

Priority 3 (P3) No remedial Works Required

Area has asbestos-containing materials, where:

1. The condition of friable material is stable and has a low potential of being disturbed.
2. The material is currently in a non-friable condition, may have slight damage, but do not present an exposure unless cut, drilled, sanded or otherwise abraded.

This presents a low risk of exposure where the materials are left undisturbed under the control of an asbestos management plan. Defer any major action unless materials are to be disturbed as a result of maintenance, refurbishment or demolition operations.

Priority 4 (P4) No remedial Works Required

The asbestos material is in a non-friable form and in good condition. It is unlikely that the material can be disturbed under normal circumstance and can be safely subjected to normal traffic. Even if it were subjected to minor disturbance the material poses a negligible health risk. These materials should be left and their condition monitored during subsequent reviews. As with any asbestos materials, these materials must be removed prior to renovations that may impact on the materials.
Friable Asbestos Materials Re-Inspection Survey
Knight Frank Pty Ltd
400 Kent Street, Sydney NSW
Appendix D: Photographs

Friable Asbestos-Containing Materials
Photo 1. Level 13, Lift Motor Room, Switchboards, Fuses - Suspected asbestos-containing internal insulation
Friable Asbestos Materials Re-Inspection Survey

Knight Frank Pty Ltd

400 Kent Street, Sydney NSW

Appendix E: General Hazardous Materials Information
Information on Common Asbestos Materials

Asbestos-containing materials can be classified into the following main categories:

- Sprayed or trowelled asbestos materials applied to ceilings, walls and other surfaces for fire-rating purposes. This material is commonly referred to as limpet asbestos.
- Asbestos-containing insulation on pipes, boilers, tanks, ducts etc. which is often referred to as asbestos lagging.
- Asbestos cement products, cementitious or concrete-like products.
- Asbestos paper products, millboard in electrical switchboards or underlaying lining for linoleum or vinyl floor coverings.
- Asbestos textiles, braided asbestos, rope, tape, gaskets etc (note that rope and millboard are potentially friable).
- Vinyl tiles, linoleum and vinyl flooring mastic and associated adhesives.
- Asbestos-containing compounds, gaskets and mastic from mechanical fittings and roofing membranes.
- Electrical switchboards containing compressed asbestos tar electrical boards, asbestos cement sheeting, asbestos rope to spark arresters and asbestos millboard from inside auxiliary switchboxes/fuse boards.
- Roofing sealants, bituminous membranes, tar composites and similar materials were occasionally mixed with asbestos materials.
- Some office furnishings such as wall partitions may contain an asbestos cement internal lining inside plaster or “Stramit” type paneling. Certain types of older vinyl covered desktops and workbenches may contain an underlying asbestos millboard lining.

Sprayed Asbestos Materials

Sprayed asbestos or limpet asbestos is most often found on structural steel members to provide a fire-rating. Limpet asbestos is a friable material. Friable materials are those which can easily be crumbled, pulverised or reduced to powder by hand pressure. Limpet asbestos tends to be the most friable of all asbestos-containing materials and can contain relatively high percentage of asbestos (30% - 90%).

Limpet asbestos can slowly release fibres as the materials age i.e. As its friability increases. Direct mechanical damage or excessive machinery vibration can lead to more significant release of airborne asbestos fibres.

Asbestos-Containing Lagging Materials

Insulation such as lagging usually contains a smaller percentage of asbestos (usually 20% - 50%). Protective jackets on the insulation materials (such as metal jacketing or calico on pipe lagging) prevent asbestos fibre release. Physical damage to the protective jacket however, may lead to the release of respirable fibres. The binding material in the insulation can deteriorate with age rendering it more friable.

Asbestos Cement Sheeting Materials

Asbestos cement products and asbestos gaskets generally do not present a significant health risk unless they are cut, sanded or otherwise disturbed so as to release asbestos dust. Fibre release due to occasional damage is negligible and thus not a significant health risk. Care must be taken therefore in the removal of asbestos cement products to avoid the release of airborne fibres. Unless analysis of fibro-cement products indicates otherwise, these materials should be considered as containing asbestos.

External asbestos cement claddings become weathered after many years by the gradual loss of cement from the exposed surface. This leaves loosely bound layers enriched with asbestos fibres. In other words, the material becomes more friable through the weathering process.
Asbestos-Containing Vinyl Products

Vinyl tiles and linoleum flooring manufactured before 1984 may contain asbestos in various quantities in a well-bound cohesive matrix. Asbestos-containing vinyl floor and wall coverings generally do not present a significant health risk unless they are sanded or otherwise mechanically abraded so as to release asbestos dust. Fibre release due to occasional damage is negligible and thus not a significant health risk. Care must be taken therefore, in the removal of asbestos-containing vinyl tiles to avoid the release of airborne fibres. Unless analysis of vinyl tiles and linoleum flooring indicates otherwise, these materials should be considered as containing asbestos. Older bituminous adhesives may also contain asbestos and must be removed as an asbestos process in circumstances where the floor is to be renewed and re-levelled by floor sanding or grinding.

Asbestos-Containing Gaskets

Gaskets and sealing compounds in equipment, duct work and re-heat air conditioning boxes may contain asbestos. These should be replaced with non-asbestos equivalents during routine maintenance. In addition, asbestos-containing mastic and seals in air handling duct work joints usually do not pose a hazard as the asbestos fibres are firmly held within the plastic resinous compound and should be replaced as part of routine maintenance or removed during the demolition of the plant equipment.

Asbestos Insulation to Re-Heat Boxes

Insulation to internal lining of ductwork sections and electrical re-heat air conditioning boxes generally contain asbestos millboard. These should be replaced with non-asbestos equivalents during routine maintenance.

Asbestos-Containing Mastics and Sealants

Many mastic and sealant products contain Chrysotile asbestos within the pliable, resinous matrix. The nature of the substrate is such that it does not readily dry out in situ, and therefore the fibres are well bound and pose a low risk.

Management of Asbestos Hazards

The health effects associated with asbestos exposure are due to the inhalation of airborne respirable asbestos fibres. In general, the asbestos fibres cannot be released to become airborne in significant quantities unless the asbestos-containing material is severely disrupted such as in the case of cutting asbestos cement products with powersaws etc.

A range of control measures are available for the abatement of asbestos hazards. The selection of the appropriate control measure is based on the assessment risk for each specific location. These measures include:

- Leave and maintain in existing condition.
- Repair and maintain in good condition.
- Enclose asbestos or synthetic mineral fibre material by providing a barrier such as a box enclosure or steel cladding.
- Remove by approved methods under controlled conditions.
- Labelling of asbestos materials that are to remain in situ should be undertaken where practical to ensure that the asbestos materials are not damaged inadvertently by maintenance contractors etc.

Synthetic Mineral Fibre (SMF)

General

In the late 1980's the International Agency for Research on Cancer (IARC) evaluated certain SMF materials as being possibly carcinogenic to humans. The similarity in application and appearance to asbestos has resulted in some community concern regarding the health effects associated with exposure to SMF.
Current medical research indicates that the slightly increased risk of lung cancer for workers employed in the early days of rockwool and slagwool manufacture, and workers in the glasswool sector is not anticipated under present day working conditions. However, acute health affects such as eye, skin and upper respiratory tract irritation may occur with certain SMF products.

Caution is required when handling SMF products in order to minimise disturbance of the materials and subsequent airborne SMF fibre levels. Where SMF materials are to be installed or removed, then suitable controls and appropriate personal protection are to be provided.

It is recommended that the following Code of Practice be closely adhered to for appropriate procedures when handling such materials:

Polychlorinated Biphenyls (PCBs)

General

PCBs are usually identified as a colourless to darker coloured oily liquid. PCBs are considered probable carcinogens. They can be absorbed through the skin, inhaled as a vapour or ingested, therefore contact with them should be prevented. They are often found in old transformers and metallised capacitors of fluorescent light fittings. These synthetic compounds are chemically stable, have good insulating properties and do not degrade appreciably over time or with exposure to high temperatures. It is these properties that made PCBs useful in electrical devices.

Lead-Containing Paint

General

Lead paint, as defined by the Australian Standard AS4361.2 – 1998 Guide to Lead Paint Management – Part 2: Residential and Commercial Buildings, is that which contains in excess of 1% Lead by weight.

Lead carbonate (white lead) was once the main white pigment in paints for houses and public buildings. Paint with lead pigment was manufactured up until the late 1960’s, and in 1969 the National Health and Medical Research Council’s Uniform Paint Standard was amended to restrict lead content in domestic paint.

Many older Australian homes and buildings still contain lead paint, even though it may be covered with layers of more recent paint. Lead paint was used mainly on exterior surfaces, and to a lesser degree on interior doors plus door and window architraves, especially in undercoats and primers, where concentrations of up to 20% lead content were used. Interior walls weren’t commonly painted with paint containing white lead pigment, though some colours did contain red, orange and yellow lead pigments.

All paints manufactured for Australian dwellings from the 1970’s onwards have been required to contain less than 1% lead, though higher lead-content industrial paints may have been applied since then to housing and commercial buildings.

Lead in any form is toxic to humans when ingested or inhaled, with repeated transmission of particles cumulating in lead poisoning. Lead paint removal poses two potential avenues of transmission. Firstly by inhalation or ingestion by workers and public in the vicinity of the works, and secondly by the deposition of particles on nearby footpaths, streets or soil where they may be resuspended, tracked into houses or buildings where it can be inhaled or ingested.